

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration

Hiroshi Tsuji ^{a,b}, Takashi Nonaka ^a, Makiko Yamashita ^a, Masami Masuda-Suzukake ^a, Fuyuki Kametani ^a, Haruhiko Akiyama ^c, David M.A. Mann ^d, Akira Tamaoka ^b, Masato Hasegawa ^{a,*}

ARTICLE INFO

Article history: Received 8 November 2011 Available online 22 November 2011

Keywords: Aggregation Tau Alpha-synuclein ALS FTI D

ABSTRACT

TAR DNA-binding protein of 43 kDa (TDP-43) is the major component of the intracellular inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we show that both monoclonal (60019-2-lg) and polyclonal (10782-2-AP) anti-TDP-43 antibodies recognize amino acids 203–209 of human TDP-43. The monoclonal antibody labeled human TDP-43 by recognizing Glu204, Asp205 and Arg208, but failed to react with mouse TDP-43. The antibodies stained the abnormally phosphorylated C-terminal fragments of 24–26 kDa in addition to normal TDP-43 in ALS and FTLD brains. Immunoblot analysis after protease treatment demonstrated that the epitope of the antibodies (residues 203–209) constitutes part of the protease-resistant domain of TDP-43 aggregates which determine a common characteristic of the pathological TDP-43 in both ALS and FTLD-TDP. The antibodies and methods used in this study will be useful for the characterization of abnormal TDP-43 in human materials, as well as in vitro and animal models for TDP-43 proteinopathies.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

TDP-43 is a nuclear ribonucleoprotein implicated in exon splicing, gene transcription, regulation of mRNA stability, mRNA biosynthesis, and formation of nuclear bodies [1-5]. It has been identified as the major component of the ubiquitin-positive taunegative intracytoplasmic inclusions in frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) [6,7] and other neurodegenerative disorders [8-12]. Identification of mutations in familial and sporadic ALS and FTLD cases demonstrated a direct link between the genetic lesion and development of TDP-43 pathology [13-16]. Immunohistochemical studies using anti-TDP-43 antibodies revealed that TDP-43 translocates from its normal nuclear localization into the cytoplasm in these disorders. Furthermore, biochemical analysis detected abnormally phosphorylated TDP-43 of 45 kDa, high-molecular-weight smearing and C-terminal fragments of approximately 25 kDa, as well as normal TDP-43 of 43 kDa in the detergent-insoluble, urea-soluble fraction from affected brains. The antibodies generated by immunizing C-terminal phosphopeptides of TDP-43, such as pS409/410 and

pS403/404, strongly stain abnormal neuronal cytoplasmic and dendritic inclusions in FTLD, and skein-like and glial cytoplasmic inclusions in ALS spinal cord, with no nuclear staining, and thus permit easier and more sensitive detection of abnormal TDP-43 accumulations in neuropathological examination [17]. Immunoblotting of the Sarkosyl-insoluble fractions from FTLD and ALS cases using these phosphospecific antibodies clearly demonstrated that hyperphosphorylated full-length TDP-43 of 45 kDa, smearing substances and fragments at 18–26 kDa are the major species of TDP-43 accumulated in FTLD and ALS, and the band patterns of the C-terminal fragments of phosphorylated TDP-43 correspond to the neuropathological subtypes.

Anti-TDP-43 monoclonal antibody (mAb) (60019-2-Ig; Proteintech Group Inc., Chicago, IL) and polyclonal antibody (pAb) (10782-2-AP; Proteintech Group Inc., Chicago, IL) are widely used for the investigation of TDP-43 pathology [6,7,9,18–21]. According to the manufacturer's specifications, anti-TDP-43 mAb and pAb were generated against the N-terminal 260 amino acids (aa) of the protein, but the precise epitope has not yet been identified. Another mouse monoclonal antibody against TDP-43 (2E2-D3; Abnova Corporation, Taipei, Taiwan) is also commercially available; it recognizes residues 205–222 of human TDP-43, but does not recognize mouse or rat TDP-43 [22].

^a Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan

Department of Neurology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tenodai, Tsukuba-City, Ibaraki 305-8576, Japan

Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan

d Mental Health and Neurodegeneration Research Group, Greater Manchester Neuroscience Centre, University of Manchester, Hope Hospital, Salford M6 8HD, UK

^{*} Corresponding author. Fax: +81 3 6834 2349. E-mail address: hasegawa-ms@igakuken.or.jp (M. Hasegawa).

In this study, we mapped the epitope for anti-TDP-43 mAb and pAb (Proteintech Group Inc.). We also showed that anti-TDP-43 mAb recognizes human TDP-43, but not mouse TDP-43. Using these antibodies, we investigated the abnormal forms of TDP-43 from ALS and FTLD brains, and found that the antibodies recognized the amino-terminus of the TDP-43 C-terminal fragments of 24–26 kDa. Immunoblot analysis of Sarkosyl-insoluble fractions after treatment of proteases also demonstrated that the epitope is apparently resistant to trypsin and chymotrypsin in the abnormal TDP-43, suggesting that the epitope region is important for the formation of the pathological structure of TDP-43 in ALS and FTLD.

2. Materials and methods

2.1. Construction of plasmids

GFP-tagged TDP-43 C-terminal or N-terminal fragments were constructed as described [23] by amplifying a cDNA encoding full-length TDP-43 by means of PCR and inserting the fragment into the pEGFP-C1 vector (Clontech). To investigate the specificity of TDP-43 mAb for human TDP-43, site-directed mutagenesis of GFP-tagged full-length TDP-43 was carried out to substitute Glu204 to Ala (E204A), Asp205 to Glu (D205E), Arg208 to Gln (R208Q), Glu209 to Gln (E209Q), Ser212 to Cys (S212C), Asp216 to Glu (D216E), and Met218 to Val (M218V), using a site-directed mutagenesis kit (Strategene)(Fig. 4). All constructs were verified by DNA sequencing.

2.2. Antibodies

TDP-43 polyclonal antibody, 10782-2-AP, and TDP-43 monoclonal antibody, 60019-2-Ig, were purchased from Proteintech Group Inc. Anti-GFP monoclonal antibody was purchased from MBL (Nagoya, Japan). A polyclonal antibody specific for phosphorylated TDP-43 (pS409/410) was prepared as described [17].

2.3. Cell culture and expression of plasmids

Human neuroblastoma cell line SH-SY5Y and mouse neuroblastoma cell line Neuro 2a were maintained in appropriate medium as described previously [24,25]. Cells were then transfected with expression plasmids using FuGENE6 (Roche) according to the manufacturer's instructions.

2.4. Immunoblotting

Expressed proteins in cell lysates were separated by 10% SDS-PAGE and transferred onto polyvinylidene difluoride membrane (Millipore, Bedford, MA). After blocking with 3% gelatin, membranes were incubated overnight with primary antibodies (1:1000) at room temperature. After incubation with an appropriate biotinylated secondary antibody, labeling was detected using the ABC system (Vector Lab., Burlingame, CA) coupled with a diaminobenzidine (DAB) reaction intensified with nickel chloride.

2.5. Analysis of abnormal TDP-43 in ALS and FTLD-TDP brain

Brains from two cases with Alzheimer's disease (AD), two with ALS, two with FTLD-TDP (type A), two with FTLD-TDP (type B) and two with FTLD-TDP (type C) were employed in this study. The two AD cases had no TDP-43 pathology. The age, sex, brain weight, and diagnosis are given in Table 1. Sarkosyl-insoluble, urea-soluble fractions were extracted from these brains as previously described [6,9]. The samples were loaded onto 15% polyacrylamide gel and

Table 1 Description of subjects.

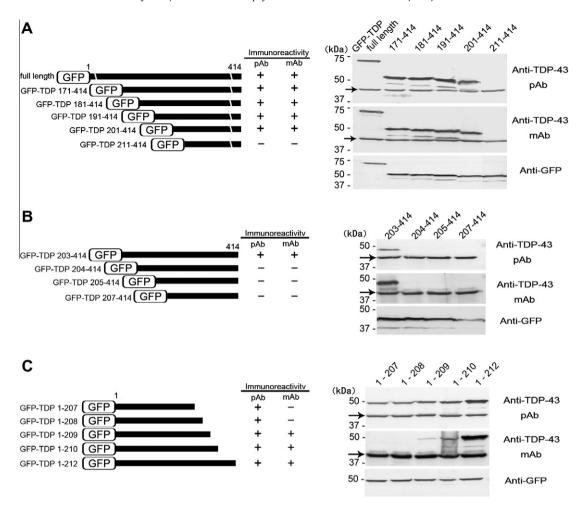
Case No.	Diagnosis	Age (years)	Sex	BW (g)
1	AD	65	F	1165
2	AD	70	F	1126
3	ALS	62	M	1230
4	ALS	42	F	1140
5	FTLD-TDP (type A)	71	F	863
6	FTLD-TDP (type A)	66	F	1100
7	FTLD-TDP (type B)	45	M	1260
8	FTLD-TDP (type B)	67	M	1280
9	FTLD-TDP (type C)	67	M	na
10	FTLD-TDP (type C)	59	M	na

BW, brain weight; AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; FTLD-TDP, frontotemporal lobar degeneration with TDP-43 pathology; na, not available

transferred onto a membrane. The membrane was cut in the center of the loaded lane, and the same samples were reacted separately with anti-TDP-43 Abs and pS409/410 as described above.

2.6. Protease treatment of TDP-43

Sarkosyl-insoluble fractions extracted from neocortical regions of the brains were treated with trypsin (at a final concentration of 100 µg/ml, Promega, Madison, USA) or chymotrypsin (at a concentration of 10 µg/ml, Sigma–Aldrich, St. Louis, USA) at 37 °C for 30 min. The reaction was stopped by boiling for 5 min. After centrifuging at 15,000 rpm for 1 min, the samples were analyzed by immunoblotting with anti-TDP-43 pAb and mAb as described above


3. Results

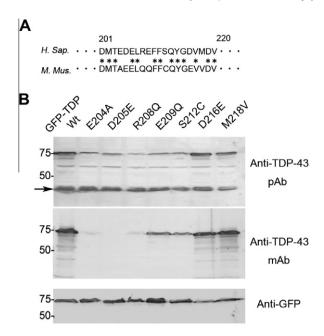
3.1. Epitope mapping of anti-TDP-43 antibody

Our previous study showed that both TDP-43 mAb and pAb reacted with GFP-tagged TDP-43 C-terminal fragment (GFP-TDP 162–414), but failed to detect GFP-TDP 218–414 [23]. To map the epitope of these antibodies, we expressed a series of GFP-tagged human TDP-43 C-terminal fragments (Fig. 1A) in SH-SY5Y cells and immunoblotted them with the antibodies. Both anti-TDP-43 pAb and mAb detected endogenous human TDP-43 of 43 kDa and exogenous GFP-tagged full-length, 171–414, 181–414, 191–414 and 201–414 TDP-43. However, both antibodies failed to detect 211–414 (Fig. 1A). These results suggest that the epitopes of these antibodies are located within residues 201–210.

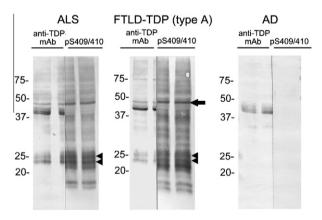
To narrow down the epitope structure further, another series of GFP-tagged C-terminal fragments of TDP-43 was expressed in SH-SY5Y cells (Fig. 1B) and tested. Both antibodies reacted with GFP-TDP 203–414, but failed to recognize GFP-TDP 204–414, 205–414 and 207–414 (Fig. 1B), demonstrating that Thr203 forms the N-terminal border of the epitope for both antibodies.

To determine the C-terminus of the epitope, a series of GFP-tagged N-terminal fragments of TDP-43 was expressed and immunoblotted with these antibodies (Fig 1C). Anti-TDP-43 pAb reacted with all of the N-terminal fragments tested, although it stained the 1-212 fragment most strongly. This suggests that one of the pAb epitopes is located at the N-terminal region of TDP-43, in addition to the central epitope. Anti-TDP-43 mAb strongly stained GFP-TDP 1-212, moderately stained GFP-TDP 1-210, and barely stained GFP-TDP 1-209, while it failed to react with GFP 1-208 and 1-207 (Fig. 1C), indicating that Glu209 forms the C-terminus of the epitope for anti-TDP-43 mAb. Thus, anti-TDP-43 mAb recognizes residues 203–209 of human TDP-43.

Fig. 1. Epitope mapping of anti-TDP-43 polyclonal and monoclonal antibodies. (A) Schematic diagram of GFP-tagged full-length TDP-43 (GFP-TDP) and the C-terminal fragments. Immunoblot analyses of GFP-TDP and the C-terminal fragments in SH-SY5Y cells. Both mAb and pAb reacted with GFP-TDP and the C-terminal fragments, except for 211–414. The anti-GFP antibody recognizes all the proteins expressed. (B) Further epitope mapping of anti-TDP-43 antibodies. Immunoblot analyses of the GFP tagged C-terminal fragments of TDP-43. Both mAb and pAb reacted with 203–414, but failed to recognize 204–414, 205–414, and 207–414. The anti-GFP antibody recognizes all of the fragments. (C) Epitope mapping of the C-terminus recognized by anti-TDP-43 polyclonal and monoclonal antibodies. Immunoblot analyses of GFP-TDP and N-terminal fragments in SH-SY5Y cells. Anti-TDP-43 pAb reacted with all of the N-terminal fragments, although it stained 1-212 fragment most strongly. In contrast, anti-TDP-43 mAb strongly stained GFP-TDP 1-212, moderately stained GFP-TDP 1-2109, while it failed to react with GFP 1-208 and 1-207. The anti-GFP antibody recognized all of the fragments equally. The arrows indicate endogenous TDP-43 in SH-SY5Y cells.


3.2. Amino acid sequence differences between human and mouse TDP-43

The anti-TDP-43 mAb reacted with endogenous TDP-43 of human neuroblastoma SH-SY5Y cells, but not with TDP-43 of mouse neuroblastoma Neuro2a cells (Fig. 1B, 1C, 2B). Similarly, the mAb recognized TDP-43 in human brain extract, but failed to detect TDP-43 in mouse brain extract, suggesting that the mAb does not recognize mouse TDP-43 (data not shown). The absence with mouse TDP-43 is explained the sequence differences around the epitope between human and mouse TDP-43 (Fig. 2A). Each different amino acid of human TDP-43 was substituted to that of mouse TDP-43. The mutated proteins were expressed in Neuro2a cells and immunoreactivity with anti-TDP-43 mAb was examined. Substitution of D216 to E and M218 to V did not affect the immunoreactivity (Fig. 2B), whereas substitutions of E204 to A, D205 to E, and R208 to Q abolished the immunoreactivity of anti-TDP-43 mAb, indicating that these residues are necessary for recognition by the mAb. Anti-TDP-43 pAb reacted with these mutants, although a marked


decrease in immunoreactivity was observed in the cases of E204A, D205A, R208Q, and S212C.

3.3. Biochemical analysis of abnormal TDP-43 in ALS and FTLD brains with anti-TDP-43 mAb

On immunoblots of Sarkosyl-insoluble fractions extracted from the brain of patients with ALS and FTLD-TDP (type A), the anti-TDP-43 mAb detected phosphorylated full-length TDP-43 at 45 kDa, two bands around 25 kDa and high-molecular-weight smears, in addition to the normal TDP-43 band at 43 kDa, which can also be detected in control cases. Immunoblot analysis of the split membrane with a phosphorylation-dependent anti-TDP-43 antibody pS409/410 revealed that the two bands around 25 kDa stained with the mAb corresponded to the C-terminal fragments of 24 and 26 kDa recognized by pS409/410 (Fig. 3)[17]. These results demonstrated that these 24 and 26 kDa C-terminal fragments contain the epitope of the mAb, residues 203–209, and that the cleavage sites of these C-terminal fragments are located at the N-terminal side of Thr203.

Fig. 2. Alignment of human and mouse TDP-43 (A) and immunoblot analyses of mutated TDP-43 with anti-TDP-43 antibodies. (A) The amino acid sequences of human (upper) and mouse (lower) TDP-43 around the epitope of anti-TDP-43 mAb. The asterisks show identical amino acids. (B) Immunoblot analyses of GFP-TDP wild type (Wt) and GFP-TDP mutants expressed in Neuro2a cells. Substitution of D216 to E and M218 to V did not affect the immunoreactivity, whereas substitutions of E204 to A, D205 to E, and R208 to Q, abolished the immunoreactivity of anti-TDP-43 mAb. Anti-TDP-43 pAb reacted with all these mutants, although markedly decreased immunoreactivities were observed in E204A, D205A, R208Q, and S212C. The arrows indicated endogenous TDP-43 in Neuro2A cells. Note that endogenous mouse TDP-43 in Neuro 2a cells was not recognized by anti-TDP-43 mAb.

Fig. 3. Immunoblot analyses of Sarkosyl-insoluble fractions from ALS, FTLD-TDP (type A), and AD brains with anti-TDP-43 monoclonal antibody and phosphorylation-dependent anti-TDP-43 antibody, pS409/410. With pS409/410, fragments of approximately 45 kDa and 18–26 kDa, as well as smearing, were detected. The banding pattern of 18–26 kDa fragments showed three major bands at 23, 24, and 26 kDa, and 2 minor bands at 18 and 19 kDa, with the 24 kDa band being the most intense. In addition to the normal full-length TDP-43 at 43 kDa, anti-TDP-43 mAb labeled phosphorylated full-length TDP-43 at 45 kDa, high-molecular-weight smears and two bands at 26 kDa and 24 kDa (arrowheads), which were not seen in the AD case. The two bands corresponded to the major 26 and 24 kDa bands were detected with pS409/410.

3.4. The epitope of these TDP-43 antibodies constitute part of proteaseresistant core domain of TDP-43 in ALS and FTLD brains

In order to characterize the epitope further, we treated the Sarkosyl-insoluble fractions extracted from brains of patients with proteases and analyzed them with these antibodies. Without pro-

tease treatment, both antibodies strongly stained normal fulllength TDP-43 of 43 kDa in all cases examined including AD cases which were without TDP-43 pathology. In ALS and FTLD-TDP cases, phosphorylated full-length TDP-43 of 45 kDa (Fig 4A, arrows) and the ~25 kDa fragments (Fig 4A, arrow heads) were detected with these antibodies. After trypsin treatment, the full-length band of TDP-43 was disappeared and the protease-resistant fragments around 25 kDa (Fig 4B, white arrows) and smearing substances appeared in the ALS and FTLD-TDP cases. Similarly, after chymotrypsin treatment, protease-resistant triplet bands of 16, 20 and 25 kDa (Fig 4C, white arrow heads) and smearing substances were clearly detected in ALS and FTLD-TDP-cases with the mAb, while no such bands were seen in AD cases. On blot with the pAb, multiple bands were detected in addition to the triplet, and some of these bands were also detected in AD cases, suggesting that the pAb stained some normal fragments in addition to the abnormal TDP-43 bands. In the cases examined, apparent difference was not detected in these trypsin-resistant and chymotrypsin-resistant bands detected among the clinicopathological phenotypes of the diseases. By proteinase K treatment, immunoreactivities with these antibodies were completely abolished (data not shown), suggesting that the epitope is not entirely resistant to any proteases. However, it is obvious that the epitope of the TDP-43 deposited in the patients is fairly protease-resistant compared to the normal protein. These results indicate that the epitope of the mAb (residues 203-209 of TDP-43) constitute part of the protease-resistant domain of TDP-43 which determine a common characteristic of the abnormal TDP-43 in both ALS and FTLD-TDP.

4. Discussion

This is the first analysis of the epitopes of Proteintech's anti-TDP-43 polyclonal and monoclonal antibodies, which have often been used to research TDP-43 proteinopathies since 2006 [6,7]. We demonstrated that anti-TDP-43 mAb specifically recognizes residues 203–209 of human TDP-43, which form a part of the second RNA-recognition motif (RRM2, residues 193–257) of normal TDP-43 [26], but constitute part of the protease-resistant core domain of TDP-43 aggregates that determine the common characteristic of abnormal TDP-43 in ALS and FTLD-TDP-43.

RRM2 is a functional domain with distinct RNA/DNA binding characteristics. The anti-TDP-43 mAb recognized human TDP-43, but not mouse TDP-43. Site-directed mutagenesis and subsequent immunoblot analysis revealed that Glu204, Asp205 and Arg208 residues in human TDP-43 are important for the specific recognition by the mAb (Fig. 2). In fact, human TDP-43 shares 98.5% homology with mouse TDP-43 at the amino acid level, but the RRM2 domain has only 66% homology.

We also showed that one of the major epitopes of the pAb is located in almost the same region at that of the mAb (Fig. 1), although the pAb also recognizes the N-terminal region of TDP-43. Recently, TDP-43 transgenic mice overexpressing human TDP-43 have been produced as animal models of TDP-43 protein-opathy [27]. However, abnormal TDP-43 pathologies in these mice are very rare, so new transgenic or other animal models that develop abundant TDP-43 pathology are still required. Since the TDP-43 mAb recognizes human TDP-43, but not mouse TDP-43, it will be a useful reagent for the characterization of mouse lines transgenic for human TDP-43, together with phosphorylation-dependent antibodies.

Biochemical analyses of TDP-43 proteinopathies have demonstrated that abnormally phosphorylated full-length and C-terminal fragments of TDP-43 are the major species in the inclusions. The band patterns of the C-terminal fragments at 18–26 kDa are closely correlated with the clinicopathological subtypes of TDP-43 proteinopathies [17]. In addition, most of the pathogenic mutations

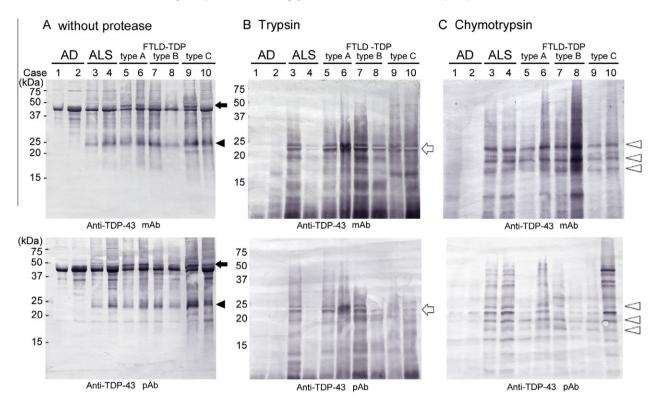


Fig. 4. Immunoblot analysis of Sarkosyl-insoluble fractions from AD and TDP-43 proteinopathies before and after protease treatment. (A) Without protease treatment, normal TDP-43 of 43 kDa was detected with these antibodies in all cases examined. In the ALS and FTLD-TDP cases, phosphorylated full-length TDP-43 of 45 kDa (arrows), high-molecular-weight smears, and the 24–26 kDa fragments (arrow heads) were detected in addition to the normal TDP-43. (B) Upon trypsin treatment, full-length TDP-43 disappeared, and the protease-resistant ~25 kDa fragments (white arrows) and smears appeared in ALS and FTLD-TDP cases, but not in AD cases. (C) After chymotrypsin treatment, triplet bands (white arrowheads) were detected in ALS and FTLD-TDP cases with the mAb and multiple bands were detected with pAb, whereas such immunoreactivities were hardly detected in AD cases.

are found in the C-terminal half of the TDP-43 [13-16]. Therefore, misfolding or structural alteration of the C-terminal half of TDP-43 seems to be the key to the pathogenesis of TDP-43 proteinopathies. By mass spectrometric analysis of the 23 kDa band in Sarkosylinsoluble fraction from FTLD-TDP (type A), we identified the cleavage site as the N-terminus of Asp219 [23]. Another group reported cleavage at Asp208, based on N-terminal sequencing of urea extracts of FTLD-TDP brain [28]. However, the cleavage sites of the other major C-terminal fragments of 24 and 26 kDa have not been determined yet. In this study, we showed that the pathological TDP-43 C-terminal fragments of 24 and 26 kDa in ALS and FTLD-TDP type A contain the epitope of anti-TDP-43 mAb, residues 203-209, by comparing the immunoblotting results with those using pS409/410 (Fig. 3). This result suggests that the cleavage sites of pathological TDP-43 C-terminal fragments in ALS and FTLD-TDP are located at the N-terminal side of Thr203. Although the mechanisms of generation of the C-terminal fragments are still controversial, the presence of multiple cleavage sites suggests that cleavage may occur after the aggregation or assembly of TDP-43.

Structural or conformational changes in the proteins are thought to be the most important in protein aggregation in these neurodegenerative diseases. To analyze the conformational change in the epitope of TDP-43 from normal to the abnormal states further, we treated the Sarkosyl-insoluble TDP-43 with trypsin or chymotrypsin, and immunoblotted with these antibodies. The protease-resistant TDP-43 bands and smears were detected in ALS and all subtypes of FTLD-TDP with these anti-TDP-43 antibodies (Fig. 4), while no such bands were seen in AD cases. These demonstrate that the epitope is protease-resistant in the abnormal TDP-43 but not in normal TDP-43. Using an antibody pS409/410 that recognizes the C-terminal phosphorylation sites, some

protease-resistant TDP-43 bands are detected, and the band patterns are slightly different between ALS and FTLD-TDP type C [29]. On immunoblots with anti-TDP-43 pAb and mAb, such difference was not observed. This is probably due to that the epitope of the mAb and pAb is located in the amino-terminus of the proteaseresistant core of the TDP-43, whereas epitope of the pS409/410 located in the C-terminus. Similar protease-resistant bands have been reported in abnormal prion in prion diseases, tau in Alzheimer's disease and alpha-synuclein in Parkinson's disease and dementia with Lewy bodies. Biochemical studies in these proteinopathies suggested that the protease-resistant bands represent the core domains of the filamentous aggregates of these proteins with cross-β structures [30–32]. By analogy with these proteins we propose that these protease-resistant C-terminal fragments represent the core of the filamentous aggregates of TDP-43. Since the epitope of the mAb and pAb are determined to locate at residues 203-209, this may be important in the formation of a core region of pathological TDP-43 aggregates which is common in all TDP-43 proteinopathies. Finally, the protease treatment used in this study may be useful for detection of the abnormal TDP-43 in brains of patients, animal models, culture cells and in vitro models with these anti-TDP-43 antibodies more specifically, as used for detection of abnormal prion proteins.

Acknowledgments

Authors thank Dr Tetsuaki Arai (Tsukuba University) for helpful advice and discussions. This work was supported by a Grant-in-Aid for Scientific Research (A) (to M.H., 11000624) from Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from Ministry of Health, Labor and Welfare of Japan (to M.H.).

References

- Y.M. Ayala, T. Misteli, F.E. Baralle, TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 3785–3789.
- [2] Y.M. Ayala, F. Pagani, F.E. Baralle, TDP43 depletion rescues aberrant CFTR exon 9 skipping, FEBS Lett. 580 (2006) 1339–1344.
- [3] E. Buratti, F.E. Baralle, Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease, Front. Biosci. 13 (2008) 867–878.
- [4] S.H. Ou, F. Wu, D. Harrich, et al., Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs, J. Virol. 69 (1995) 3584–3596.
- [5] I.F. Wang, N.M. Reddy, C.K. Shen, Higher order arrangement of the eukaryotic nuclear bodies, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 13583–13588.
- [6] T. Arai, M. Hasegawa, H. Akiyama, et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Biochem. Biophys. Res. Commun. 351 (2006) 602-611.
- [7] M. Neumann, D.M. Sampathu, L.K. Kwong, et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Science 314 (2006) 130–133.
- [8] T. Arai, I.R. Mackenzie, M. Hasegawa, et al., Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies, Acta Neuropathol. (Berl) 117 (2009) 125–136.
- [9] M. Hasegawa, T. Arai, H. Akiyama, et al., TDP-43 is deposited in the Guam parkinsonism-dementia complex brains, Brain 130 (2007) 1386–1394.
- [10] C.F. Tan, M. Yamada, Y. Toyoshima, et al., Selective occurrence of TDP-43immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease, Acta Neuropathol. (Berl) 118 (2009) 553–560.
- [11] Y. Toyoshima, H. Tanaka, M. Shimohata, et al., Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology, Acta Neuropathol. (Berl) 122 (2011) 375–378.
- [12] O. Yokota, Y. Davidson, E.H. Bigio, et al., Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy, Acta Neuropathol. (Berl) 120 (2010) 55-66.
- [13] E. Kabashi, P.N. Valdmanis, P. Dion, et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nat. Genet. 40 (2008) 572, 574
- [14] J. Sreedharan, I.P. Blair, V.B. Tripathi, et al., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis, Science 319 (2008) 1668–1672.
- [15] A. Tamaoka, M. Arai, M. Itokawa, et al., TDP-43 M337V mutation in familial amyotrophic lateral sclerosis in Japan, Intern. Med. 49 (2010) 331–334.
- [16] I.R. Mackenzie, R. Rademakers, M. Neumann, TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia, Lancet Neurol. 9 (2010) 995– 1007.

- [17] M. Hasegawa, T. Arai, T. Nonaka, et al., Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis, Ann. Neurol. 64 (2008) 60-70.
- [18] I.R. Mackenzie, E.H. Bigio, P.G. Ince, et al., Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations, Ann. Neurol. 61 (2007) 427-434.
- [19] M. Neumann, L.K. Kwong, A.C. Truax, et al., TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions, J. Neuropathol. Exp. Neurol. 66 (2007) 177–183.
- [20] H. Zhang, C.F. Tan, F. Mori, et al., TDP-43-immunoreactive neuronal and glial inclusions in the neostriatum in amyotrophic lateral sclerosis with and without dementia, Acta Neuropathol. (Berl) 115 (2008) 115–122.
- [21] M. Neumann, I.R. Mackenzie, N.J. Cairns, et al., TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations, J. Neuropathol. Exp. Neurol. 66 (2007) 152–157.
- [22] H.X. Zhang, K. Tanji, F. Mori, et al., Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43, Neurosci. Lett. 434 (2008) 170-174.
- [23] T. Nonaka, F. Kametani, T. Arai, et al., Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43, Hum. Mol. Genet. 18 (2009) 3353-3364.
- [24] T. Nonaka, T. Arai, E. Buratti, et al., Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells, FEBS Lett. 583 (2009) 394–400.
- [25] Y. Nishimoto, D. Ito, T. Yagi, et al., Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43, J. Biol. Chem. 285 (2010) 608-619
- [26] E. Buratti, F.E. Baralle, Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9, J. Biol. Chem. 276 (2001) 36337–36343.
- [27] H. Wils, G. Kleinberger, J. Janssens, et al., TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 3858–3863.
- [28] L.M. Igaz, L.K. Kwong, A. Chen-Plotkin, et al., Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies, J. Biol. Chem. 284 (2009) 8516–8524.
- [29] M. Hasegawa, T. Nonaka, H. Tsuji, et al., Molecular Dissection of TDP-43 Proteinopathies, J. Mol. Neurosci. 45 (2011) 480-485.
- [30] J. Collinge, K.C. Sidle, J. Meads, et al., Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD, Nature 383 (1996) 685–690.
- [31] H. Miake, H. Mizusawa, T. Iwatsubo, et al., Biochemical characterization of the core structure of alpha-synuclein filaments, J. Biol. Chem. 277 (2002) 19213– 19219.
- [32] M. Novak, J. Kabat, C.M. Wischik, Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament, EMBO J. 12 (1993) 365–370.